POST-MORTEM MICROSCOPIC CHANGES IN SELECTED RAT TISSUES: BETRAYERS OF FORENSIC, TOXICOLOGIC AND DIAGNOSTIC PATHOLOGISTS

K. Weber, R. de Miguel, A. Domènech, R. Kreutzer, F.J. Mayoral, P. Ortega, Y. Okazaki,

L. Polledo, T. Razinger, O. Richard, R. Sánchez

POST-MORTEM ALTERATION OR REAL LESIONS?

AUTOLYSIS (4h) in Distal Convoluted Tubules

NECROSIS in Proximal Convoluted Tubules

TO DESCRIBE THE MICROSCOPIC CHANGES IN RAT TISSUES AFTER DELAYED POSTMORTEM FIXATION

TO ANALYZE THE IMPACT OF EXSANGUINATION AND COOLING

MATERIAL & METHODS

HISTOLOGICAL EVALUATION (Digital Slides)

Post-Mortem alterations in Rat Kidneys: <u>Different Onset and Progression</u> <u>at each compartment</u>

Cortex

OSOM

2

INNER STRIPE – OUTER MEDULLA

INNER STRIPE – OUTER MEDULLA

DISTAL CONV. TUB. +++ Pyknosis +++ Swelling/Lysis

GLOMERULI + Homogenization ++ Pyknosis

PROXIMAL CONV. TUB. ++ Separation of cells ++ Pyknosis or ↓ stain

ASCENDING TUBULI ++ Pyknosis ++ Swelling/Lysis

24h

CORTEX

OUTER STRIPE – OUTER MEDULLA

ASCENDING/DESCENDING TUB. +++ Pyknosis +++ Swelling/Lysis + Sloughing

INNER STRIPE – OUTER MEDULLA

<u>COLLECTING DUCTS / TUB.</u> ++ Epithelial detachment

DISTAL CONV. TUB. +++ Pyknosis +++ Swelling/Lysis

PROXIMAL CONV. TUB. +++ Coalescence of cells +++ Pyknosis or ↓ stain ++ Swelling / Lysis ++ Ghost appearance of tubuli

CORTEX

ASCENDING TUBULI +++ Pyknosis +++ Swelling/Lysis

48h

OUTER STRIPE – OUTER MEDULLA

ASCENDING/DESCENDING TUB. +++ Pyknosis +++ Swelling/Lysis ++ Sloughing

INNER STRIPE – OUTER MEDULLA

<u>COLLECTING DUCTS / TUB.</u> +++ Epithelial detachment

INNER STRIPE – OUTER MEDULLA OUTER STRIPE – OUTER MEDULLA

LIVER

The amount of **glycogen and fat** within hepatocytes could be playing an **unknown role** in post-mortem alterations

LIVER

Visceral Surface was more affected

36h

by post-mortem alterations than Diaphragmatic surface

HEPATIC PARENCHYMA (MIDZONAL)

PORTAL AREA

HEPATOCYTES

- + Pyknosis
- ++ Loss of cell borders
- ++ Perinuclear halo
- ++ Cytoplasmic loss of granularity

BILE DUCTS ++ Swelling & Detachment +++ Pyknosis ++ Cell Lysis

24h

HEPATIC PARENCHYMA (MIDZONAL)

PORTAL AREA

SMALL & LARGE INTESTINE

Large Intestine: Cecum > Colon > Rectum

Intestines were the first tissues displaying post-mortem alterations

+ Separation of enterocytes from lamina propia

20

SMALL INTESTINE

++ Separation of enterocytes from lamina propia + <u>Sloughing of apical enterocytes</u> + Separation of enterocytes from lamina propia

1h

SMALL INTESTINE

Crypts were more resistant than villi

Goblet cells were more resistant than enterocytes

SMALL INTESTINE

+++ Separation of enterocytes from lamina propia ++ Sloughing of apical enterocytes ++ <u>Crypts: Sloughing/ Lysis</u> + Separation of enterocytes from lamina propia ++ Sloughing of enterocytes ++ <u>Goblet cells: Sloughing/ Lysis</u>

SMALL INTESTINE

COOLING OF ANIMALS AFTER DEATH

	COOLING EFFECT
Kidneys	Slow Down
Liver	Slow Down
Intestines	Slow Down

Room Temperature (18–22°C)

Refrigerator (2–6°C)

Refrigerator (2–6°C)

EXSANGUINATION OF ANIMALS AFTER DEATH

	COOLING EFFECT	EXHANGUINATION
Kidneys	Slow Down	Slow Down
Liver	Slow Down	Slow Down
Intestines	Slow Down	No Effect

Non-Exsanguinated

Exsanguinated

CONCLUSIONS

- 1. Post-mortem microscopic changes in rat tissues are <u>specific</u>, <u>recognizable</u>, progressive and evolve over time
- The onset and progression of post-mortem microscopic changes in rat tissues can <u>differ among organs and among areas of the same</u> <u>organ</u>
- **3.** <u>Exsanguination and cooling may slow down the progression of</u> post-mortem microscopic changes in rat tissues
- 4. <u>A global interpretation of all organ findings and its comparison with</u> other organs is needed to <u>ease the differentiation between</u> <u>post-mortem changes and real lesions</u>

POST-MORTEM MICROSCOPIC CHANGES IN SELECTED RAT TISSUES: BETRAYERS OF FORENSIC, TOXICOLOGIC AND DIAGNOSTIC PATHOLOGISTS

K. Weber, R. de Miguel, A. Domènech, R. Kreutzer, F.J. Mayoral, P. Ortega, Y. Okazaki,

L. Polledo, T. Razinger, O. Richard, R. Sánchez

