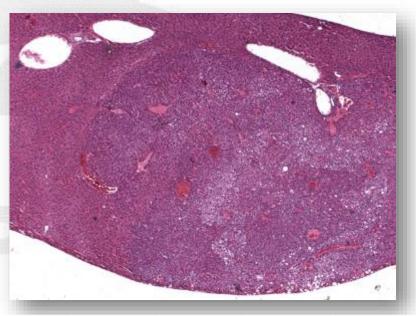
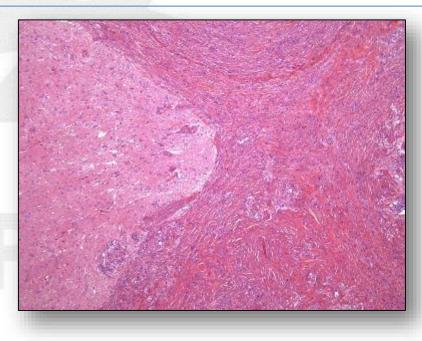
Overview of Animal Tumors with Questionable Relevance to Human Risk Assessment


K.Weber, PhD, DVM, MSBiol AnaPath GmbH, Switzerland BSL Bioservice GmbH

Introduction

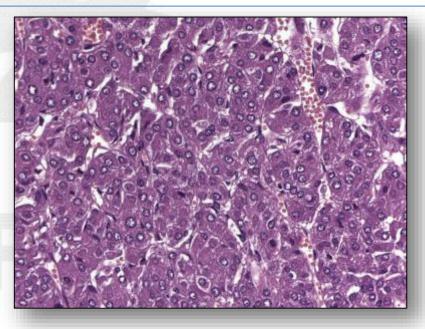
- Study evaluation
- Distribution of tumors by chance
- Prestep lesions
- Value of Statistics
- Value of control data
- Data interpretation
- Considerations on MOA
- Mechanistical approaches

Problems by diagnostic terms/criteria


• Examples: liver: nodular hyperplasia

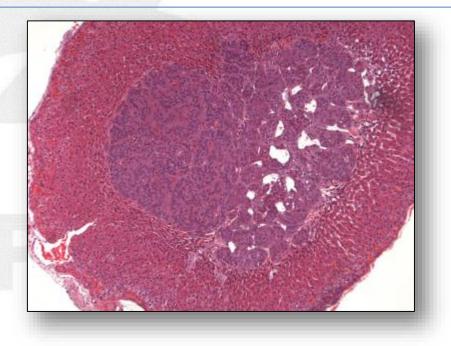
Total examined	Μ	F	Μ	F	Μ	F	Μ	F				
	52	52	52	52	52	52	52	52				
Original Diagnoses												
Hepatocellular	12	1	7	4	12	7	27	22				
adenoma												
Nodular	9	3	9	4	18	8	22	6				
hyperplasia												
Diagnoses after Peer Review												
Hepatocellular	14	4	12	8	18	12	34	24				
adenoma												

Single-High-Dose Cases


- Example: Meningiosarcoma (malignant meningioma)
- In males: 1 high dose
 case P > 0.001
- True?

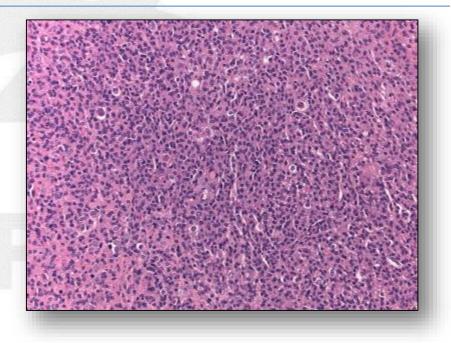
Male	Total n	Total %	Mean %	STDEV %	MIN %	MAX %
Numbers of rats examined	3805					
Meningioma	2	0.05	0.06	0.31	0.00	2.04
Meningial sarcoma	1	0.03	0.03	0.20	0.00	1.43

Single-High-Dose Cases


- Example: Aesthesioneuroblastoma in nasal cavity
- In males: 1 high dose case P > 0.001
- True?

- Not any information in control animals
- Only described as induced tumor

By-chance distribution


- Example: Pheochromocytoma, B6C3F1 mouse
- Induced?

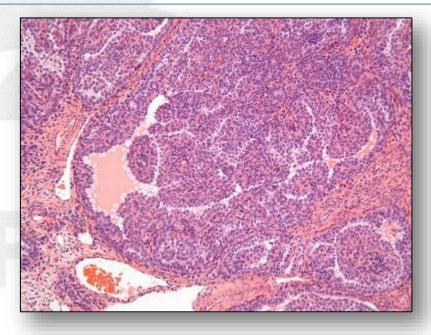
Groups	1	L	2	2	3	3	L	1
Total examined	Μ	F	Μ	F	Μ	F	Μ	F
	52	52	52	52	52	52	52	52
Pheochromocytoma, b.	1	0	0	0	0	0	0	1
Pheochromocytoma, m.	0	0	0	0	0	0	0	1
Hyperplasia, medulla	2	5	5	1	6	3	5	1

By-chance distribution

- Example:
 3 astrocytomas in rat females, high dose
 3 oligodendrogliomas in rat males, low dose
- Why should be the high dose tumors test itemrelated?

Female	Total n	Total %	Mean %	STDEV %	MIN %	MAX %
Numbers of rats						
examined	3777					
Astrocytoma	7	0.19	0.21	0.55	0.00	2.00

Single cases exceeding control data incidences


Example: hepatocellular carcinoma in Wistar Rats:
 0, 0, 0, 0, and 2 (groups 1, 2, 3, 4 and 5)

Male	Total n	Total %	Mean %	STDEV %	MIN %	MAX %
Numbers of rats examined	3973					
Adenoma, hepatocellular	79	1.99	1.95	1.96	0	8.00
Carcinoma, hepatocellular	18	0.45	0.45	0.78	0	2.80

Study ID			1				2				3			Ĺ	4			!	5	
Sex	М	F	М	F	М	F	М	F	М	F	М	F	М	F	М	F	М	F	М	F
Group	3	3		4	3	3		4	:	3		4	3	3	Ĺ	1	3	3	L	1
Adenoma	2	1	2	0	0	0	1	2	0	0	0	0	0	0	0	0	0	1	1	0
%	4.0	2.0	4.1	0	0	0	6.7	9.1	0	0	0	0	0	0	0	0	0	2.0	2.0	0
Carcinoma	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Relevance of pre-neoplastic lesions

- Example: increased granulosa cell tumors (benign) in high dose females
- And Precursors?
- Sex stromal cord hyperplasia vs granulosa cell hyperplasia.

Female	Total n	Total n %	Mean %	STDEV %	MIN %	MAX %
Numbers of rats examined	3766					
Theca cell hyperplasia	3	0.08	0.08	0.34	0.00	1.49
Granulosa cell hyperplasia	79	2.10	2.51	6.09	0.00	28.00
Granulosa-theca cell	11	0.29	0.38	2.46	0.00	17.86
hyperplasia						
Interstitial cell hyperplasia	314	8.34	10.16	23.58	0.00	95.83
Sertoli cell hyperplasia	300	7.97	9.42	19.17	0.00	68.00
Luteal hyperplasia	1	0.03	0.04	0.27	0.00	2.00
Sex cord stromal hyperplasia	163	4.33	4.11	14.55	0.00	88.00

- rare neoplasm: if in an assay involving one or two hundred animals there may be no such neoplasm, or at most one or two such neoplasms in animals of one sex and strain
- if only one or two animals have a particular type of neoplasms in a standard assay, a statistically significant result is completely impossible. This holds true even if one or two such neoplasms occur in the top dose group and there are none elsewhere in the study.

- Common neoplasm: "...if it occurs spontaneously in five or ten or more animals in most experiments performed with animals of one strain"
- Peto, R.; Pike, M.C.; Day, N.E.; Gray, R.G.; Lee, P.N.; Parish, S.; Peto, J.; Richards, S.; Wahrendorf, J.: Guidelines for simple, sensitive significance tests for carcinogenic effects in long-term animal experiments. International Agency for Research on Cancer Monographs (suppl. 2), 311-426 (1980).

- only if the number of neoplastic lesions exceeded 5% in at least one sex/dose group the statistical calculation was considered to give evidence of a significant trend
- Gart, J.J.; Krewski, D.; Lee, P.N.; Tarone, R.E.; Wahrendorf, J.: Statistical Method in Cancer Research. Vol III – The Design and Analysis of Long-term Animal Experiments. IARC Scientific Publications No. 79. IARC, Lyon (1986).

- Only one-tailed p-values of p<0.025 for rare neoplasm's and p-values of p<0.05 for common neoplasms are considered to be statistically significant.
- Lin, K.K.; Rahman, M.A.: Overall false positive rates in tests for linear trend in tumor incidence in animal carcinogenicity studies of new drugs. J Biopharm Statistics, 8: 1-15 (1998).

Relevance of control data

Regulatory Forum

Taxicologic Pathology, 37: 679-693, 2009 Copyright © 2009 by The Author(s) ISSN: 0192-6233 print / 1533-1601 online DOI: 10.1177/0192623309336154

Best Practices for Use of Historical Control Data of Proliferative Rodent Lesions

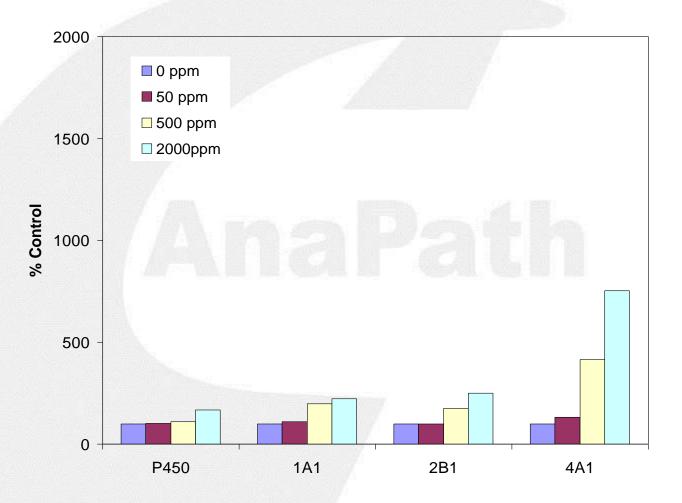
Control data: recomendations

- Concurrent control group is most relevant.
- Used as a tool for to detect an abnormal control group.
- Useful in interpretation of rare lesions.
- Study design bears variables.
- Necropsy and trimming affect control data.
- Data from own lab are more useful than from other labs.
- Peer Reviewed control data are considered of greater value.
- Published data may be used with care.
- 2-7 years collection are recommended but greater time span may be useful.

Mechanistic Studies as Interdisciplinary Approach

Example: Lung AB adenoma in Mice (Agrochemical)

Issue:


- Lung tumors in mice
- Not mutagenic in Ames Test
- Not carcinogenic in rats

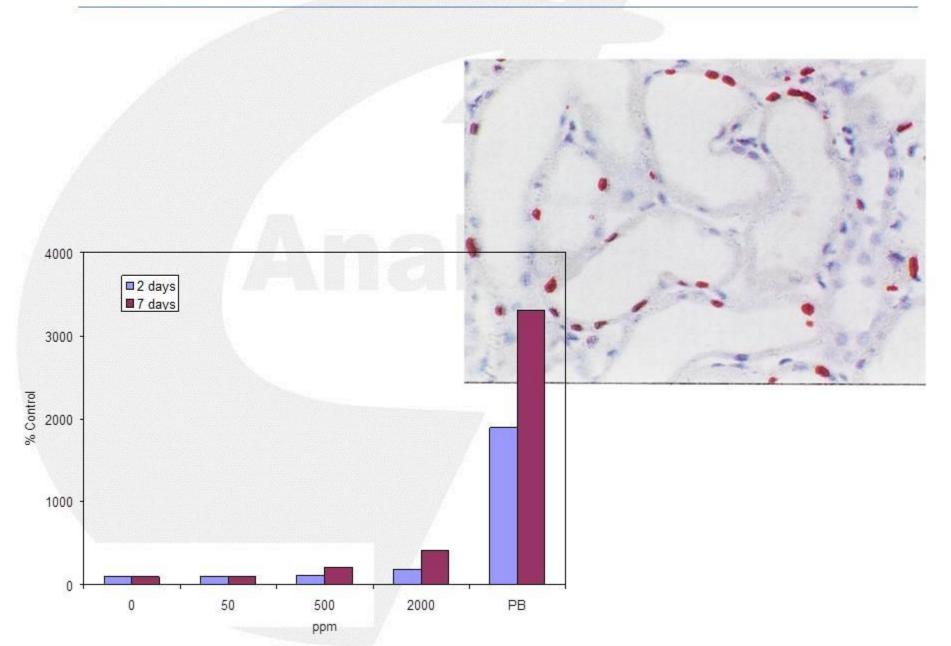
Hypothesis:

- Epigenetic non-genotoxic mode of action
- Liver enzyme induction

Weber K, Sagelsdorff P: Mechanistical Considerations on Induced Pathological Lesions, JSTP, 2011

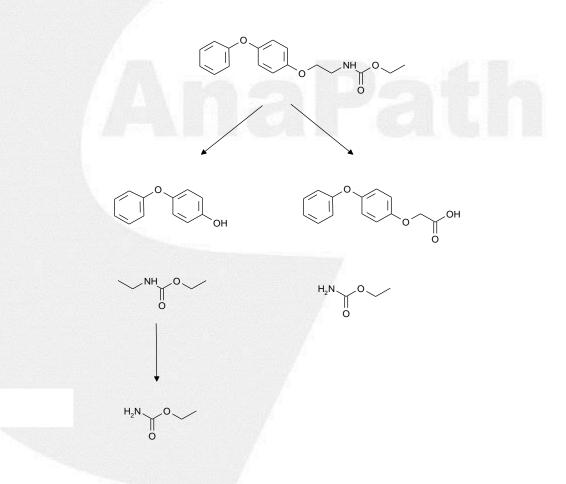
Liver enzyme induction

Partial confirmation of hypothesis


- Liver enzyme induction
- Moderate peroxisome proliferator in mouse liver
- Weak peroxisome proliferation in mouse lung

Proliferation study with weak results

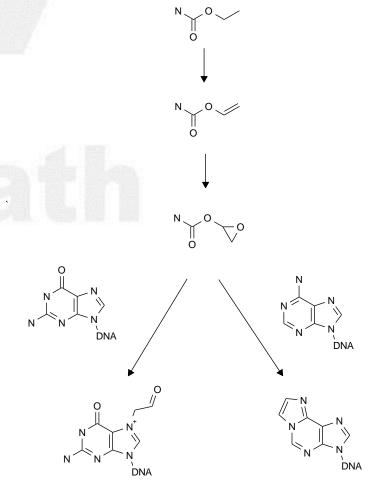
Cell proliferation in lungs?



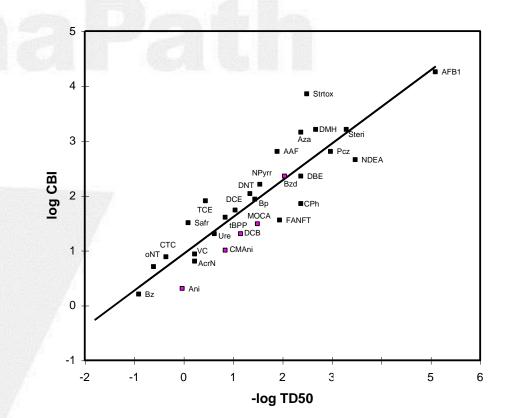
Summary on proliferation studies

- Weak stimulation of cell proliferation in mouse liver
- No stimulation of cell proliferation in mouse lung
- Stimulation of cell proliferation did not explain tumor formation in mouse lung by a non-genotoxic mode of action.

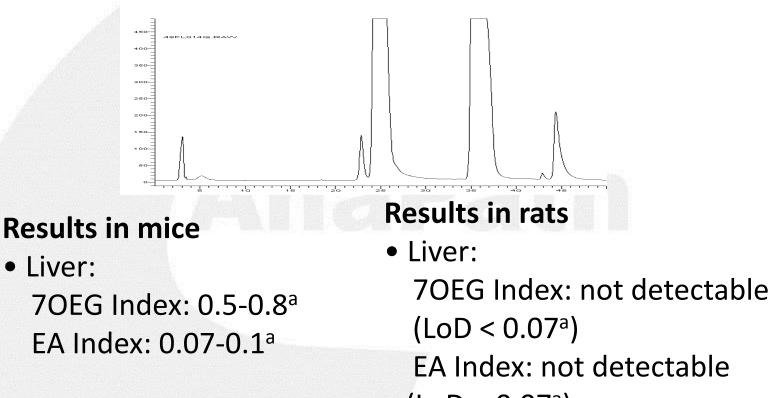
Next hypothesis: genotoxicity


• DNA Binding Assay Mouse specific metabolism to urethane

Urethane


Carcinogenic to rodents (liver, lung)

- Not mutagenic in Ames-Test
- Oxidation to vinylcarbamate
- Formation of DNA adducts (mainly oxoethyl-guanine, less ethenoadenine)



DNA binding assay

- Single (oral) treatment with radiolabelled compound
- Isolation of (liver) DNA and hydrolysis of DNA (to purines)
- HPLC Separation of normal DNA constituents from adduct (Purines from 70EG)
- Calculation of CBI (Covalent Bound Radioactivity)

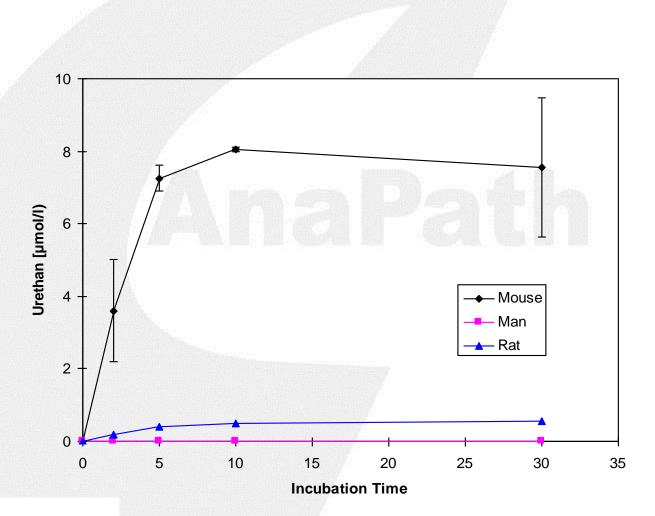
DNA binding assay

• Lung: 70EG Index: 0.7^a

EA Index: not detectable $(LoD < 0.07^{a})$

 Lung: 70EG Index: not detectable (LoD < 0.07^{a})

^a µmol adduct per mol DNA nucleotide / mmol chemical applied per kg b.w.

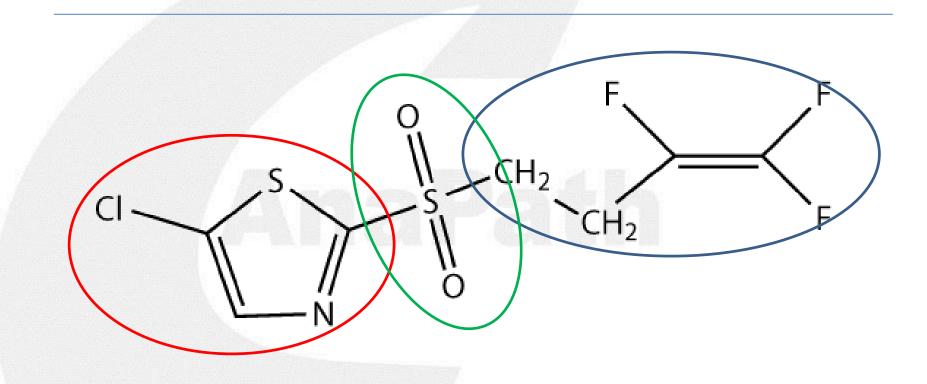

Next hyopthesis: Species-specific effect?

- Moderate/week peroxisome proliferator in mouse
- Weak/no stimulation of cell proliferation in mouse
- DNA adduct formation in mouse

 \rightarrow

- Incubation of microsomes with test item
- Extraction of urethane
- GC/MS analysis of urethane in extracts

In vitro metabolism: liberation of urethane


Urethane: results and summary

Release of urethane from parental compound

- Mouse: 200 pmol/min/mg
- Rat: 10 pmol/min/mg
- Man: <0.5 pmol/min/mg
- Human microsomes release 400 times less
- Urethane than the susceptible mice
- 20 times less Urethane the non-susceptible rat

Man is not susceptible to tumor formation by this test item

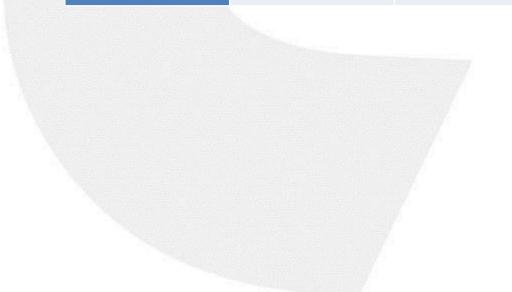
Another Example: Fluensulfone – AB-adenoma

5-Chloro-2-(3,4,4-trifluoro-but-3-ene-1-sulfonyl)-thiazole

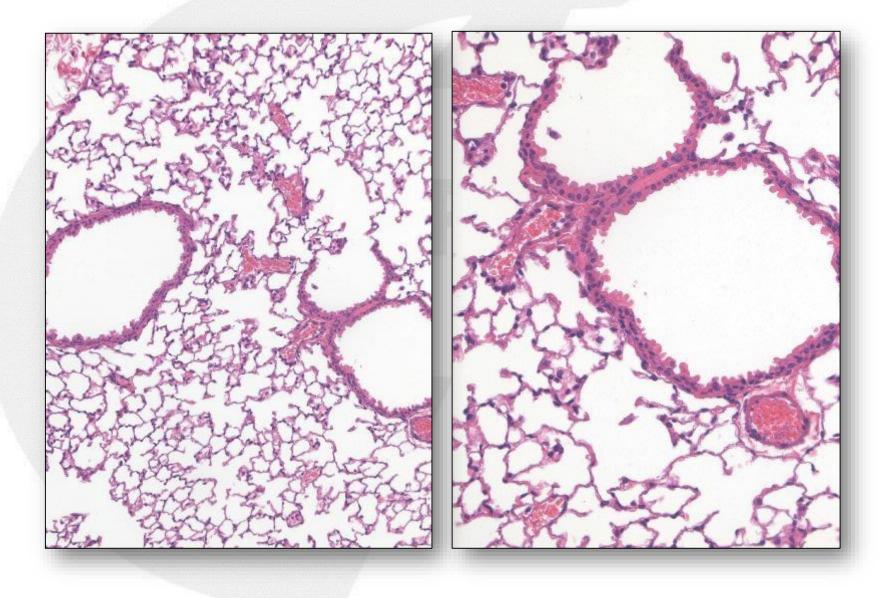
Detailed information

Toxicol Sci. 2012 Jul;128(1):284-94. doi: 10.1093/toxsci/kfs127. Epub 2012 Apr 5.

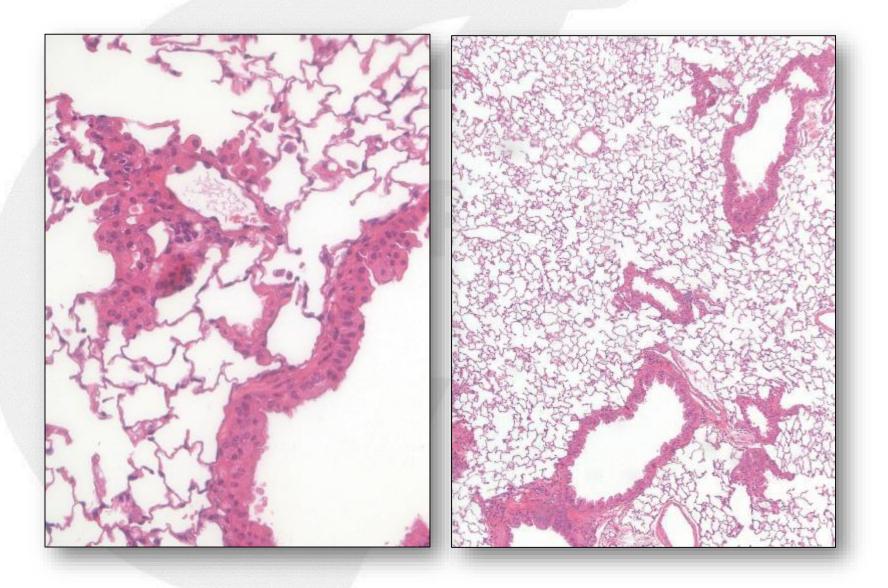
Relationship of metabolism and cell proliferation to the mode of action of fluensulfone-induced mouse lung tumors: analysis of their human relevance using the IPCS framework.

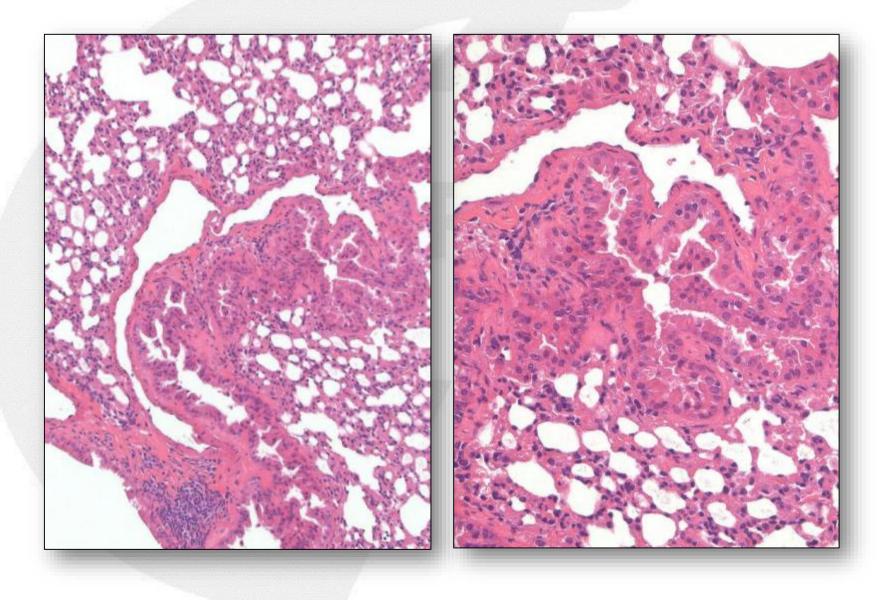

Strupp C, Banas DA, Cohen SM, Gordon EB, Jaeger M, Weber K.

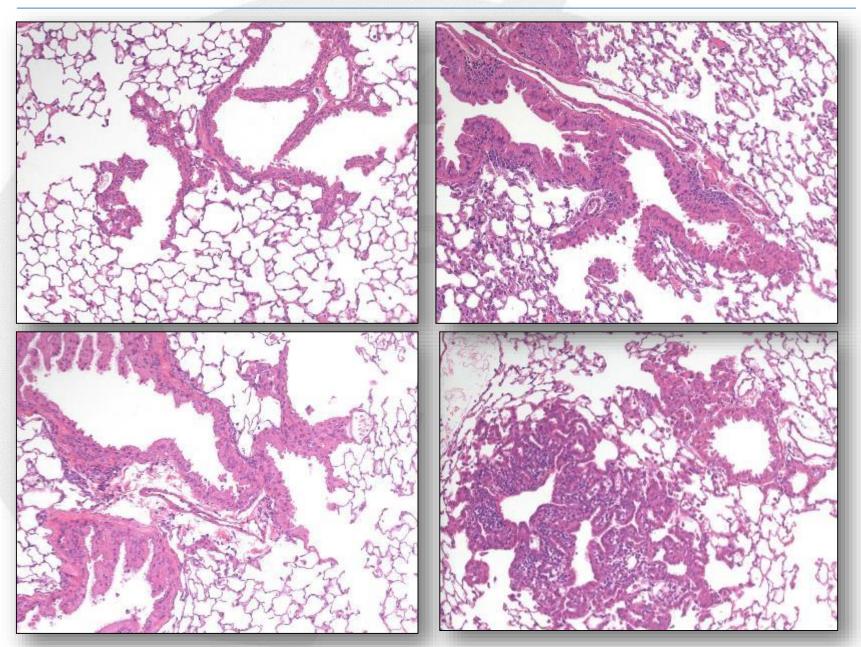
Source

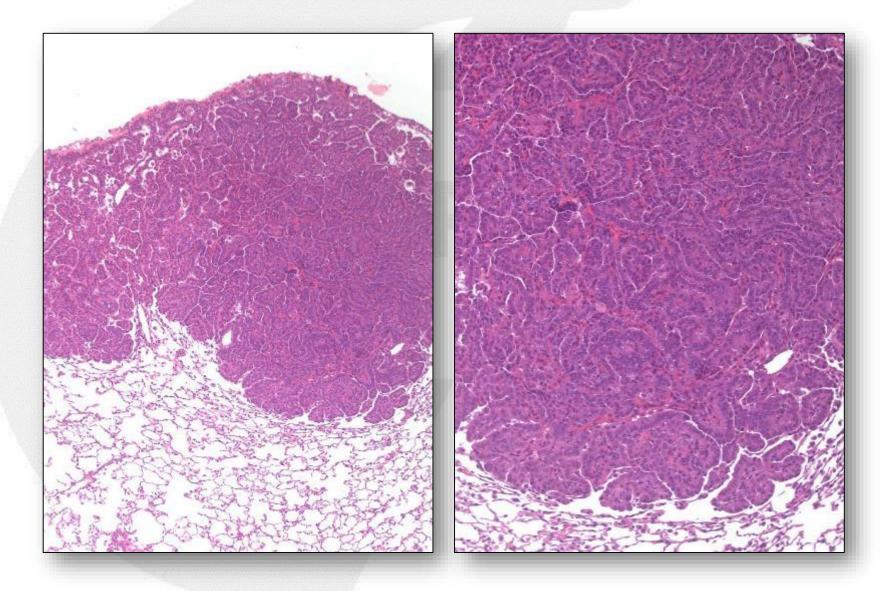

Makhteshim Agan Holding B.V., Schaffhausen Branch, 8200 Schaffhausen, Switzerland. christian.strupp@ma-europe.com

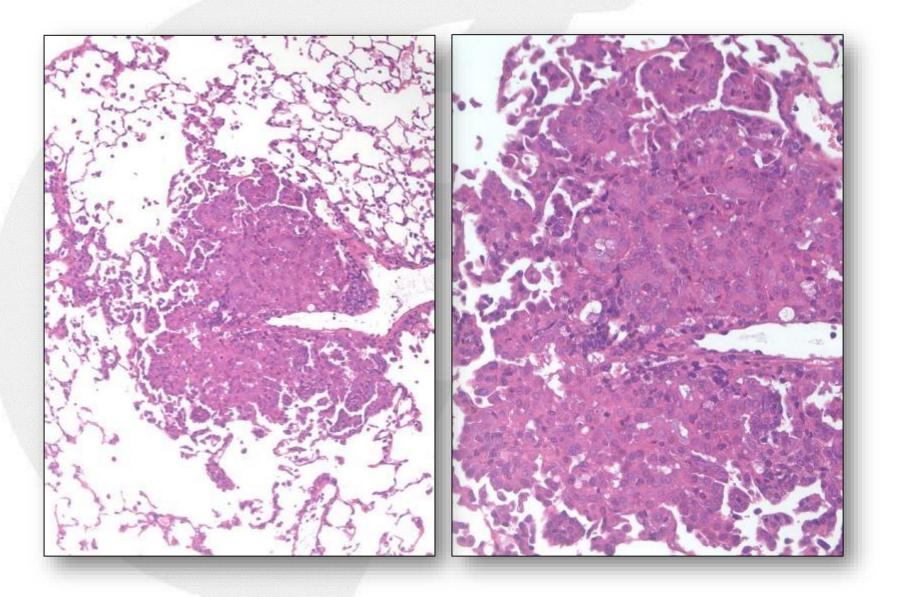
Design: 78-week mouse study


Allocation	Control	30 mg/kg	200 mg/kg	
				mg/kg
Males	50	50	50	50
Females	50	50	50	50


Control mice: lungs


High dose mouse: lungs


High dose mouse: lungs


High dose mouse: lungs - spectrum

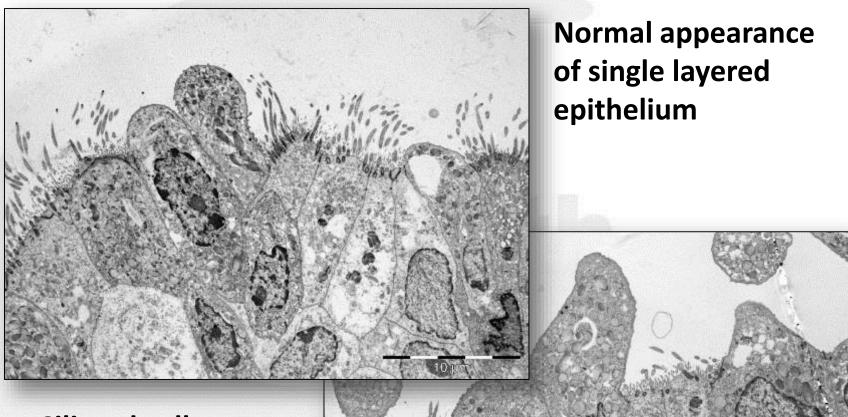
High dose mouse: lungs – AB adenoma

High dose mouse: lungs – exceptional case

Incidence on lung lesions in mice

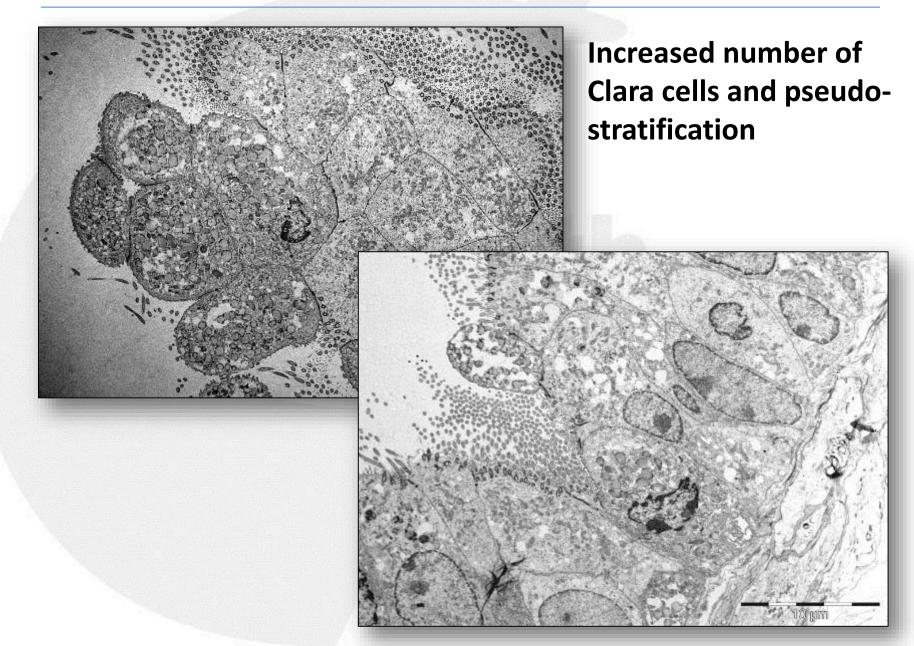
	Males				Females			
Fluensulfone [mg/kg	0	30	200	1200	0	30	200	1200
diet]								
Animals examined	50	50	50	50	50	50	50	50
Bronchiolar	1	-	24**	31**	5	7	43**	48**
hyperplasia	1.0	-	1.3	1.6	1.0	1.0	1.8	2.6
Mean grade (0-5)								
Alv/bronch.	7	9	5	12	2	4	14**	9*
adenoma								
Alv/bronch.	8	3	3	4	2	1	1	4
carcinoma	15	12	8	16	4	5	15	13
Pooled alv/bronc.	13	12	0	10	4	J	13	13
carc. & alv/bronc.								
adenoma								

Fisher exact test (one-sided): p<0.05*, p<0.01**

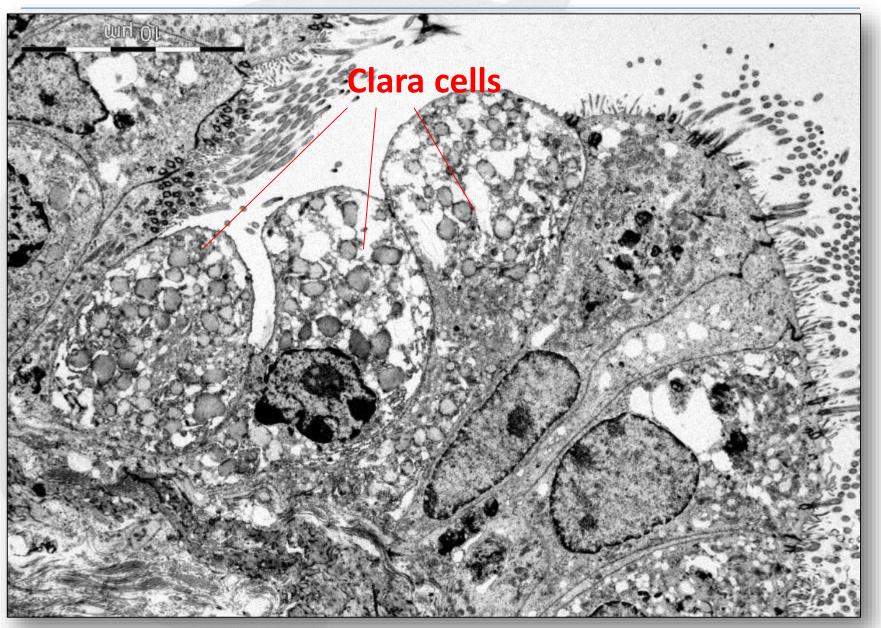

MOA: First step

- basophilic and multifocal hypertrophic epithelium
- mainly non-ciliated cells involved
- possible Clara cell origin
- electron microscopy by re-fixation and contrasting of previously formaldehyde-fixed material (Dept. Anatomy, University of Bern, Switzerland)

Results:


- increased number of Clara cells
- ciliated cells visible, however very low in number related to Clara cells
- Clara cell layers with pseudo-stratification indicating hyperplastia

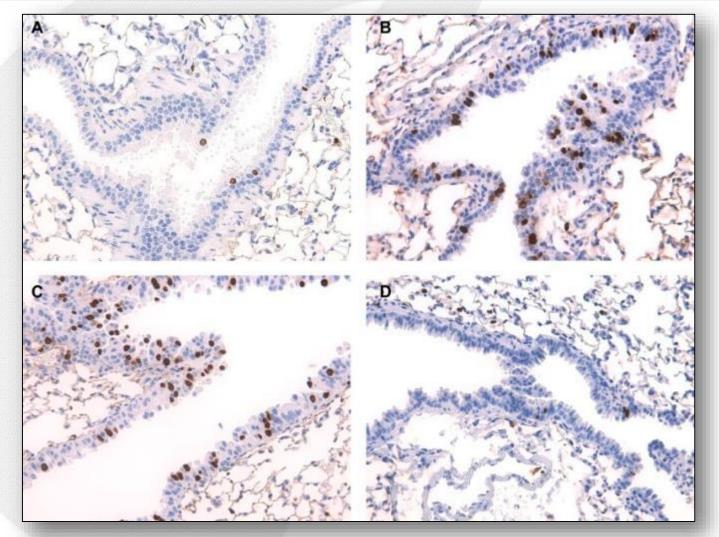
Normal bronchiolar epithelium



- Ciliated cells
- Clara cells are nonciliated containing vesicles

Hyperplastic bronchiolar epithelium

Hyperplastic bronchiolar epithelium

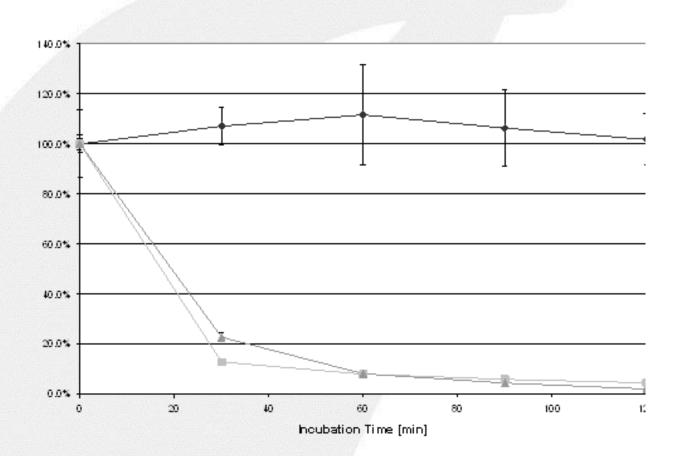

MOA: Cell proliferation study in mice

Group	Control	Fluensulfone 1200 mg/kg	Isoniazid 1305 mg/kg
Number of mice 3 days	5	5	5
7 days	5	5	5

MOA: Cell proliferation study in mice

- 2 and 14 h before sacrifice, the animals were injected ip with 100 ml of a 10 mg/ml aqueous BrdU
- Lungs (and a piece of small intestine as a labeling control)
- Histopathological evaluation and immunohistochemistry
- Number of BrdU-positive cells within all positive staining bronchiolar epithelial cells counted manually (distinction between Clara cells and other bronchial epithelial was not possible by light microscopy, therefore, all visible bronchioles on a slide were evaluated to reach at least 500 cells.
- Final counted number of all cells and positive cells was calculated for a ratio with 1000 cells in the denominator

MOA: 4x increase of cell proliferation after 3 days (recovery after 7 days)



A) Control, (B) Fluensulfone (day 3), (C) Isoniazid (day 3), (D) Fluensulfone (day 7).

MOA: comparative metabolism-results

- Metabolic capacity of the microsomes of both species confirmed by activity in converting chlorzoxazone to hydroxyl-chlorzoxazone
- In presence of inhibitors of CYP2E1 and Cyp 2f2: CYP 2E1 - no important role
 Cyp 2f2-inhibitor partly inhibited the metabolism
- After 120 minutes, fluensulfone was almost completely metabolized in mouse lung microsomes whereas in the human lung microsomes there was no indicator for metabolic transformation

MOA: species-specific metabolism

Time-dependent metabolic conversion (%) of fluensulfone in human and mouse lung microsomes

Key events

Key Event	Mice	Humans
Metabolic	Yes	No
activation by		(known lack of Cyp
Cyp 2f2		2f2 in human Clara
		cells
		and fewer Clara
		cells in humans)
Increased Clara	Yes	Unlikely
cell proliferation		
Bronchio-alveolar	Yes	Unlikely
hyperplasia and		
neoplasia		

Summary

- Pathologists as a source of misinterpretation
- PR and PWG
- Fortuities occur often
- Stars and statistics
- Species specificity
- Metabolism
- MOA vs mechanistical studies