# Different and Unusual Technologies in Pathology Evaluation

# AnaPath

Klaus Weber, PhD, DVM, MSBiol AnaPath GmbH, Switzerland

### Hard Material Technique



#### • Fixed for saw cut

**(**)

• Diamond Saw

#### Embedding



Dehdration in ethanole

#### Dehydration under Vacuum

#### **MMA** Solution

Samples in jar for MMA infiltration and polymerisation



#### **Block preparation**



#### glue and press



#### **block** glued onto OT



#### Saw Cut

#### cut and block after sawing



#### Polish, Stain and Cover Slip





# Grind and polished until the thicknes is adequate

# 0



#### **Special Stains: Hard Material**





#### **Special Stains: Toluidine Blue, Trap**



#### Hard Material: Overview



#### **Image Analysis: Designs**



### **Image Analysis: ROI Selection**



#### **Image Analysis: Documentation**



### **Engineered Tissues**

#### Morphological Characterization of the Cell Cultures by Light Microscopy



#### Endothelial Cells with Cobblestone Appearance

#### Fibroblasts with Spindle Shape Appearance

Weber K, Stenger R: Engineered heart valve grafts. . Classic Examples in Toxicologic Pathology (4th Edition) Eds: Drommer W, Karbe E, Germann PG, 4th Edition, ISBN 978-3-9814653-0-3, 2011

### **Engineered Tissues: Quality Check during Manufacturing Process: Endothelia**



### **Engineered Tissues: Quality Check during Manufacturing Process: Fibroblasts**



### Particle Analysis: ATMP, Determination of Cell Count per Weight Unit (Tissue)



### Resulting amount of nuclei by particle analysis on 4 sections (732 x 543 µm) per sample

# mean of 21505 ± 7009 (Minimum: 15455, Maximum: 31628) cells/mm<sup>3</sup>

| Sample Number    | T01 VS07 | T01 VS09 | T01 VS11 |
|------------------|----------|----------|----------|
| Mean cells / mm3 | 3858     | 3774     | 6793     |
| Sample Number    | T02 VS07 | T02 VS09 | T02 VS09 |
| Mean cells / mm3 | 3606     | 4696     | 7380     |

The total area of measurement is equivalent with an area of 397476  $\mu$ m<sup>2</sup> at an approximate thickness of 3  $\mu$ m, i.e.1192328  $\mu$ m<sup>3</sup> = 0.01192428 mm<sup>3</sup>.

#### **Mitosis: Paticle Analysis**

#### Increased staining index with cell proliferation markers in hepatocytes Counting positive nuclei and total cell numbers



#### **Neuropathology: Detection of Degeneration**

#### Fluor Jade

- Control:
  - pyramidal neurons are dark
  - Yellow spots by fluorescence erythrocytes

- Treated:
  - necrotic pyramidal neurons are bright yellow





#### **Neuropathology: Neurotoxixicity**

Semithin



#### **Digital Microscopy: VHX2000 (Keyence)**



Originates from computer chip Quality control No objectives but cameras Magnification up to x5000 3D Most sophisticated image Analysis technique





#### **Digital Microscopy: Examples**



Presentation of distinct structures By digital subtraction (e.g. newly formed bone only



#### Organ-on-chip Surface image analysis

#### **Digital Microscopy: Examples**



# **Device texture and surface analysis**





#### Device surface analysis on Cell covering

### Preparation of unknown crystals from liver tissue by Digital Microscopy



# Example: Evaluation of Rat Pups by Digital Microscopy (Special Problems – Special Requests)

**Urinary bladder x 300** 



Urinary bladder x 300, 3D



# Example: Extreme high mortality rate by gavage (perforation)



### The gavage probe killed (Digital Microscopy)



# This gavage probe (Silicone Head) looks normal!



### Laser Scanning Microscopy (LEXT, Olympus)



# Erythrocyte Shaping: Smear Evaluation by 3D Digital Microscopy

**Evaluation of Isocytosis/Anisocytosis** 



Fresh Smear No staining Human x3000

# Other Issues: Hemocompatibility and Morphology

In case of suspected membrane instability, e.g. anemia of unknown reason or with indication in smear:

- Testing by Parpart (not always reliable)
- Testing by Scanning Electron Microscopy, i.e. sampling and fixation of erythrocytes with subsequent measurements of concavity depths

# Hemocompatibility and/or Membrane Instability: SEM



Concavity measurement: Groups with differences in concavity in a case of anemia

# Hemocompatibility and/or Membrane Instability: Laser Scanning Digital

**Example from smear with pre-fixed erythrocytes** 



# Hemocompatibility and/or Membrane Instability: Laser Scanning Digital



Erythrocyte Zoomed x 12500

# Reporting



BenutzerID: GUEST Benutzername: GUEST Beschreibung: GUEST USER

131128\_111303 [Aufnahmeparameter] Scanmodus: XYZ-Feinscan + Farbe Bildgröße [Pixel]: 1024X1024 Bildgröße [µm]: 22X22 Objektivlinse: MPLAPONLEXT100x Zoom: 6X DIC: Aus

Comment

|              | Nr.    | Ergebn | Breite[µm] | Höhe[µm] | Länge[µm] | Winkel[°] | Dateiname   |
|--------------|--------|--------|------------|----------|-----------|-----------|-------------|
| 1            | 1      |        | 1.812      | 2.035    | 2.724     | 48.321    | 131128_1113 |
| Zählung      |        | ing    | 1          | 1        | 1         | 1         | 1           |
| Durchschnitt |        | nitt   | 1.812      | 2.035    | 2.724     | 48.321    |             |
| Min.         |        |        | 1.812      | 2.035    | 2.724     | 48.321    |             |
| Max          |        |        | 1.812      | 2.035    | 2.724     | 48.321    |             |
| Ben          | eich   |        | 0.000      | 0.000    | 0.000     | 0.000     |             |
| σ            |        |        | 0.000      | 0.000    | 0.000     | 0.000     |             |
| Зσ           |        |        | 0.000      | 0.000    | 0.000     | 0.000     |             |
|              | Tolera | anz    | Aus        | Aus      | Aus       | Aus       | Aus         |
| Tole         | ranz ( | oben   | 0          | 0        | 0         | 0         |             |
| Star         | ndard  |        | 0          | 0        | 0         | 0         |             |
| Tole         | ranz   | unten  | 0          | 0        | 0         | 0         |             |



# **Sperm Analysis by Digital Microscopy**







#### Zoomed x8500
### Sperm Analysis by Laser Digital Microscopy



#### **Zoomed x 8500**

#### Zoomed x 15000

### Lesions

- In contrast, in primate and rabbit, >90% of sperm without CD
- If CD present, sperm is abnormal



### CD in cynomolgus sperm

### Cytoplasmic remnant in rabbit sperm

### Lesions

• Coiled tails at reasons for infertility



#### Coiled tail in rabbit sperm

### Fake coiled tail in cynomolgus

### **Induced Lesions**





Implant 1

Implant 2





Implant 1 Reverse reflectance Implant 2 Reverse reflectance





Implant 1 Image Slope Implant 2 Image Slope

## Differences in bone surfaces: different surgically used bone saw techniques



**Conventional technique. Note detritus.**  New technology. Note free pores.



Sq: root mean square wavelength

Ssk: skewness - measure of the asymmetry of the probability distribution Sku: kurtosis - easure of the "peakedness" of the probability distribution of a realvalued random variable

Sp: maximum peak height; Sv: maximum pit depth (Sz: maximum (Sp + Sv)) Sa: arthemtic mean height

### **Examples: Bone Surface Rougness**





### **Application on Nanoparticles**



### Other examples by laser digital microscopy



### New possibilities: cell culture





### New possibilities: tissue (Example: lung)



### **Another Technique:**

### **Cytoviva Nanoscale Hyperspectral Analysis**

- image at with an Olympus BX-51 microscope equipped with the patented CytoViva illumination system and a 100W Quartz-Halogen light source
- spectral data capture with CytoViva spectro-photometer and integrated CCD camera
- spectral analysis by CytoViva Hyperspectral analysis software program

### **Hyperspectral Analysis**



### How to make it...

### Dissolved Compound Y (dark field)





### Nanoscale Hyperspectrum of test item

Weber K, Canut L, Xanxo S, Sander J, Maraschiello C, Djonov V, Yamate J, Marino K: Hepatotoxic compounds. Classic Examples in Toxicologic Pathology (4th Edition) Eds: Drommer W, Karbe E, Germann PG, 4th Edition, ISBN 978-3-9814653-0-3, 2011

### How does it looks like....



### Particle mapping (by courtesy of Cytoviva)

• CytoViva optical image of live epithelial control cell: No particles present



• CytoViva optical image of live epithelial cell incubated with CoCr particles #1



### **Particle detection in cells**

CytoViva Hyperspectral Imaging scan of live epithelial cells incubated with CoCr particles Pixels mapped in red match the exact spectral signature of CoCr particles



### **Detection of different carbohydrates**



**Collected Spectra from different sugars** 

# Detection of different carbohydrates in cryosections



### Example for Compound Tracing: Skin Samples: Human, Giemsa, 1 min



### Skin Samples: Pig, Giemsa, 1 min



### **Skin: Comparison**



### **Measurements**



Sample No 1.: Cell 7, Minipig, 4mm, Formulation A Sample No. 7.: Cell13, Human, 4mm, Formulation A

### **Measurements**



Sample No. 4.: Cell 11, Minipig, 4mm, Formulation B

Sample No. 10.: Cell17, Human, 4mm, Formulation B

### **ROI's**



### **ROI Print**

|                            | Objektflächenant                  | eil ROI | <b>ROI-Fläch</b>      | е           |
|----------------------------|-----------------------------------|---------|-----------------------|-------------|
| Statistik                  | (%)                               |         | (Pixel <sup>2</sup> ) | ROI         |
|                            |                                   | 1.77    | 7                     | 276429ROI 2 |
|                            |                                   | 14.78   | 3                     | 199645ROI 1 |
|                            |                                   | 48.56   | 5                     | 19990ROI 3  |
|                            |                                   | 41.93   | 3                     | 32743ROI 5  |
|                            |                                   | 29.37   |                       | 31260ROI 4  |
|                            |                                   | 35.25   | 5                     | 8877 ROI 6  |
| Anzahl                     |                                   | e       | 6                     | 6           |
|                            |                                   |         |                       |             |
|                            |                                   |         |                       |             |
| ROI 1: Stra<br>ROI 2: Stra | atum papillare<br>atum reticulare | } Co    | rium                  |             |
| ROI 3: Stra<br>ROI 4: Stra | atum basale<br>atum spinosum      | } ger   | germinativum          |             |
| ROI 5: Stra<br>ROI 6: Stra | atum granulosum<br>atum corneum   | }       | rtificatium           |             |

### Particle detection in bile ducts

### Crystal formation by test item. See red pixels indicating test item within bile ducts.



### **Evaluation of crystals by EDX (SEM)**



### **EDX: HE-stained sections**

- Backscattered electron picture HE-stained liver section
- The bright gray indicates the Si-glass-slide below the sample, which is denser than the tissue.
- Also possible by TEM



### Evaluation of Unknown Precipiations in Dried Liver Sections preciously Formalinfixed by EDX (SEM)

0







### **More examples**



# Use of further mineralogical/crystallographical technologies incl. X-ray powdered diffraction, RAMAN etc. (Example Mineral deposition)



### **Use of 3D Cell Cultures**

